Information-based branching schemes for binary linear mixed integer problems
نویسندگان
چکیده
Branching variable selection can greatly affect the effectiveness and efficiency of a branchand-bound algorithm. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We propose an approach which is empowered by exploiting the information contained in a family of fathomed subproblems, collected beforehand from an incomplete branch-and-bound tree. In particular, we use this information to define new branching rules that reduce the risk of incurring inappropriate branchings. We provide computational results that demonstrate the effectiveness of the new branching rules on various benchmark instances.
منابع مشابه
Generation of a reduced first - level mixed integer programmimg problem
We introduce a new way of generating cutting planes of a mixed integer programme by way of taking binary variables. Four binary variables are introduced to form quartic inequalities, which results in a reduced first-level mixed integer programme. A new way of weakening the inequalities is presented. An algorithm to carryout the separation of the inequalities, which are exponential in number, is...
متن کاملOn the Value of Binary Expansions for General Mixed-Integer Linear Programs
We study the use of binary variables in reformulating general mixed-integer linear programs. We show that binary reformulations result in problems for which almost all the binary variables replacing a general integer variable need to be explored during branching. We also give computational results on the performance of such reformulations in solving the mixed-integer programs, which support our...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملGlobal optimization of mixed-integer nonlinear programs: A theoretical and computational study
This work addresses the development of an efficient solution strategy for obtaining global optima of continuous, integer, and mixed-integer nonlinear programs. Towards this end, we develop novel relaxation schemes, range reduction tests, and branching strategies which we incorporate into the prototypical branch-and-bound algorithm. In the theoretical/algorithmic part of the paper, we begin by d...
متن کاملImproving the LP bound of a MILP by branching concurrently
In this paper the branching trees for attacking MILP are reviewed. Under certain circumstances branches can be done concurrently. This is fully investigated with the result that there are restrictions for certain dual values and reduced costs. As a sideeffect of this study a new class of cuts for MILP is found, which are defined by those values. 1 Motivation of the following thoughts Nowadays t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program. Comput.
دوره 1 شماره
صفحات -
تاریخ انتشار 2009